首页> 外文OA文献 >Identifying Functionally Important Mutations from Phenotypically Diverse Sequence Data
【2h】

Identifying Functionally Important Mutations from Phenotypically Diverse Sequence Data

机译:从表型多样的序列数据中识别功能上重要的突变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Here we present a simple statistical method to determine the phenotypic contribution of a single mutation from libraries of mutants with diverse phenotypes in which each mutant contains a multitude of mutations. The central premise of this method is that, given M phenotypic classes, mutations that do not affect the phenotype should partition among the M classes according to a multinomial distribution. Deviations from this distribution are indicative of a link between specific mutations and phenotypes. We suggest that this method will aid the engineering of functional nucleic acids, proteins, and other biomolecules by uncovering target sites for rational mutagenesis. As a proof of the principle, we show how the method can be used to deduce the individual effects of mutations in a set of 69 PL-λ promoter variants. Each of these promoters was generated by error-prone PCR and incorporated numerous mutations. The activity of the promoters was assayed using flow cytometry to measure the fluorescence of a green fluorescent protein reporter gene. Our analysis of the sequences of these mutants revealed seven positions having a statistically significant correlation with promoter activity. Using site-directed mutagenesis, we constructed point mutations for several sites, both statistically significant and insignificant, and combinations of these sites. Our results show that the statistical method correctly elucidated the phenotypic manifestations of these mutations. We suggest that this method may be useful for expediting directed evolution experiments by allowing both desired and undesired mutations to be identified and incorporated between rounds of mutagenesis.
机译:在这里,我们提出了一种简单的统计方法,可以从具有不同表型的突变体库中确定单个突变的表型贡献,其中每个突变体均包含多个突变。此方法的中心前提是,在给定M个表型类别的情况下,不影响表型的突变应根据多项式分布在M个类别之间分配。与这种分布的差异表明特定突变与表型之间存在联系。我们建议该方法将通过发现合理诱变的靶位点来辅助功能性核酸,蛋白质和其他生物分子的工程设计。作为原理的证明,我们显示了如何使用该方法来推论一组69个PL-λ启动子变体中突变的个体影响。这些启动子中的每一个都是通过易错PCR产生的,并掺入了许多突变。使用流式细胞术测定启动子的活性,以测量绿色荧光蛋白报道基因的荧光。我们对这些突变体序列的分析揭示了与启动子活性具有统计学显着相关性的七个位置。使用定点诱变,我们构建了几个位点的突变,这些位点在统计上是显着的,在统计学上是不重要的,并且这些位点组合在一起。我们的结果表明,统计学方法正确地阐明了这些突变的表型表现。我们建议该方法可能通过允许识别期望突变和不期望突变并在两轮诱变之间整合来加速定向进化实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号